Time Series Regression Models

Joe Lee,time_series

Linear Regression models

(7.1) y t = β 0 + β 1 x 1 , t + β 2 x 2 , t + + β k x k , t + ε t ,
Data |> model(TSML(Value ~ x1 + x2 + ...))

Residual Analysis for regression model evaluation

Photo

Data |> features(.innov, ljung_box, lag = 5)

Utilizing predictors to explain trends and seasonalities

Measures of Predictive Accuracy

Adjusted R^2 [Maximize]

Cross Validation (CV) [Minimize]

Akaike's Information Criterion (AIC) [Minimize]

Bayesian Information Criterion (BIC) [Minimize]

Predictor Selection

© Joe Lee.RSS